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Abstract—An exact solution has been found for the fully-developed convective flow of an electrically
conducting fluid between two vertical thermally and the electrically conducting walls, under a transverse
magnetic field. It is found that with the increase of electrical conductance of the walls, the velocity, the
temperature, the flow rate and the rate of heat transfer decrease and the magnetic field increases. But
the velocity, the magnetic field, the flow rate, the rate of heat transfer decrease and the temperature
increases with the increase of thermal conductance of the walls.
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NOMENCLATURE

constants defined in (24);
constant defined in (12);
dimensionless constant, ¢; L3 /vat;
specific heat at constant pressure;
thickness of the walls;
Planck-constant;

radiation parameter, cL?/a;
gravitational acceleration;

applied magnetic field;

induced magnetic field along z-direction;
dimensionless magnetic field, H,/ou, ac2Ho;
thermal conductivity of the fluid;
thermal conductivity of the walls;
absorption coefficient of the wall;
half-width of the channel;
Hartmann number, u, Ho L(o/pv)};
temperature gradient;

pressure;

radiative heat flux;

Rayleigh number, g BNL*/va;
temperature,

reference temperature;
temperature of the fluid;

velocity, z-direction;
non-dimensional velocity, uL/uc,;
rectangular coordinates;

thermal diffusivity;

coefficient of thermal expansion;
non-dimensional coordinate, y/L;
non-dimensional temperature, —0*/NLc;;
magnetic permeability;

kinematic coefficient of viscosity;
density of the fluid;

electrical conductivity of the fluid;
electrical conductivity of the walls;
wall conductance ratio, o,,d/oL;
thermal conductance ratio, kd/k,, L.

., asg,

INTRODUCTION

THE HYDROMAGNETIC combined free and forced con-
vection flow between two vertical parallel plates under
a transverse magnetic field, has been studied in a
number of works [1-4]. Yu and Yang [5] have studied
the effect of thermal and electrical wall conductances
on the same problem.

The above studies, however, do not take into account
heat transfer by radiation, which will be significant
when we are concerned with space technology and
higher operating temperatures. The non-magnetic fully-
developed, laminar convection flow in a vertical
channel in the optically thin limit has been studied by
Greif et al. [6] whereas Gupta and Gupta 7] studied
the same problem in the presence of a transverse
magnetic field.

In the present paper, we have studied the effect of
radiation on the combined free and forced convection
flow of an electrically conducting fluid between two
arbitrary thermally and electrically conducting vertical
parallel walls having a constant vertical temperature
gradient. An exact solution of the governing equations
has been obtained. The effect of the dimensionless
physical parameters characterizing the flow on the
velocity, the magnetic field, the temperature, the flow
rate and the rate of heat transfer have been studied
in detail.

GOVERNING EQUATIONS AND THEIR SOLUTION

Consider the combined free and forced convection
between two parallel vertical walls, due to a constant
pressure gradient in the presence of a uniform trans-
verse magnetic field Ho. We employ a cartesian
coordinate system with origin at the central line of the
channel, z-axis along the vertical direction and y-axis
along the direction of the magnetic field.

For a fully-developed laminar flow, the velocity
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and the magnetic field are given by [0, 0, u(y})] and
[0, Ho, H.(y)] respectively.

Assuming that the wall temperature has a uniform
gradient N along the z-direction the temperature of
the fluid can be assumed as

T=T*y)+Nz n

The y- and z-components of the momentum equa-
tions for the fully-developed steady flow are

op dH,
L4 H =0, 2
3y TH dy 2
d H dH 1
Qu peHodl: | pgrinn-1P oo
TS poz

where 0* = T*—T,,.
The energy and the magnetic induction equations are

d* 12
Nu=o— —— & )
&y pe, 0y
d?H, du
+opHg— = 0. 5
dy Ol Ody (5)

In the energy equation we have neglected viscous
and Joulean dissipation but included the heat radiation
emitted by the boundaries. The fluid does not absorb
its own emitted radiation in the optically thin limit.
In other words, there is no self-absorption but the fluid
does absorb radiation emitted by the boundaries. It has
been shown by Cogley et al. [8] that in the optically
thin limit for a non-gray gas near equilibrium, the
following relation holds

0qr * des;

— =4T-T, kiwl — ] di. 6
P ( ) L < at ). ¢ (6)

Using (6), equation (4) becomes

d26*
Nu=o ez — ¥, 0]
where
4 «© de,,,-
=— kiol —) dA.

¢ pCp Jo o<dT>o ®)

Subscript “0” indicates that all quantities have been
evaluated at the reference temperature T,,, which is the
temperature of the wall at z = 0. Hence our study will
be limited to small difference of wall temperature to
the fluid temperature.

Integrating equation (2) we get

H |
p=="5" +f(2) 9
Using equation (9) in (3) we have
d? H dH 19
dy“+“ 0T g0 *_«l—gﬂNz (10)

Since u and H; are functions of y only both sides
of equation (10) must be equal to a constant ¢, (say).
Thus, we rewrite equation (10) as

d u_ peHo dH,
dy p dy

——+gpo* = —ci, (11)
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where
1= —L%g—gﬁNz (12)
Introducing the following dimensionless variables
n=y/L, u =ulLfac,, h= H,jou, acH,,
0= —60*%/NLcy, c3=cyL?va, (13)
the equations (11), (7) and (5) become
12'1“2‘+M %—Ra@ - (14)
g2—8—F0= —uy, (15)
dn?
d?h  duy
d—'72 +a =0, (16)

where M, F and Ra are the dimensionless parameters
defined in the nomenclature.
The boundary conditions on u; are

=0 at n=+1 (17)

Assuming ¢,, as the electrical conductivity and d as
the thickness of the walls, the boundary conditions on h
are given by Shercliff [9] as

dh h
—+-—=0 at
dn™— ¢

The boundary conditions on temperature due to
Yu and Yang [5] are given by

n==xLl (18)

de o
—+—=0 at n=+1. (19)
dn ™y
Eliminating u; and 4 from (14), (15) and (16) we get
d4o 29
—(F+M2)d +(M?*F+Ra)0 =c;3, (20)

dn* dn?
where c3 is a constant and its solution can be readily
determined. The solution of u; and h can then be

obtained. The solution for 6, u; and h satisfying the
boundary conditions (17)-(19) are

0 = as[1—as coshmyn —(a, —ajas)coshmyn], (21)
uy = ag[ F —as(F —m?)coshmy n
~(az—ayas)(F—m3)coshmyn], (22)
] -
h= as[Rar]+a3a4 Sl
m

sinhm
+(az—ayaz)as zq,an

m;

where
_ Ym, sinh my + coshm,
" WYmj sinh my +coshm,”’
1
Ym; sinh my + coshm,’

a; =

F —a3(F ~m3)coshm,
(F—m32)coshmy —a;(F —m3)coshm,’
m3(F —m3) —Ra,

az =

aqs =mi(F—m})~Ra, as=



Effect of wall conductances on hydromagnetic convection of a radiating gas in a vertical channel

dg = Ra+asas coshmy + (a; —ayas)ascoshm,, (24)

my sinh mz

sinh
a; = Ra+azay +{az—aias)as s
mi my

ag = (1+¢)/(pas +a7), c3 = as(M*F+ Ra),
m} = 3[M?*+F + /{(F—M??—4Ra}],
m} = 4[M?+F — /{(F ~M?? —4Ra}].
The velocity, the magnetic field and the temperature
are dependent on the parameters M, F, Ra, ¢ and ¥

and the effect of the wall conductances can be studied
with the help of the parameters ¢ and .

RESULTS AND DISCUSSIONS

In order to study the effects of wall conductances
on the hydromagnetic free and forced convective flow
of the ratiating gas, we have presented the velocity, the
magnetic field and the temperature in Figs. 1-3 for
various values of ¢ and ¥ on taking M* =10, F=2
and Ra = 1. It is found from Figs. 1-3 that for fixed
values of ¢, the velocity and the magnetic field decrease
while the temperature increases with the increase of .

Yy
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FiG. 1. Velocity profiles against n.

For fixed ¥, it is also clear from the same figures that
the velocity and the temperature decrease whereas the
magnetic field increases with increase of ¢.

The non-dimensional flow rate

[/

and the rate of heat transfer

- (5.
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F1G. 3. Temperature profiles against .
are given by

sinhm,

W= Za{F —(az—aaz)(F—m3)

inh
—ay(F—m}) '”‘], (25)
m

G= ag [03 my sinh mi+ (az -y a3)m2 sinh mz]. (26)

In the absence of radiation (F = 0), equations (22),
(21), (23), (25) and (26) are identical with equations
(12), (13), (14), (17) and (18) respectively of Yu and
Yang [5].

In the absence of wall conductances (¢ =0, y = 0)
equations {21)—(23), (25) and (26} reduce to

1 m3 coshmyn
a* m3—m3 coshmy
2

mi coshmyn
e ———— 1 (27
m3 —m? ooshmz} @n
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F1G. 5. Non-dimensional rate of heat transfer vs F.

1 [F m3(F —m1?) coshm

U= mi—m? coshm,
2 2
mi(F —m3) coshm,n
+ , (28
ms—mi coshm, 2
B 1 m3(F —m?) sinhmin canhm
" aX(m3—m?) m coshm, !
mi(F —m3 sinhman
+—‘i—"’i){manhm2——ﬂ} . (29)
my coshm,
2 B m3(F —m?)
=" | Fmj—m})— 22" ianh
w a*(m%—m%), (m3—my) o anhm,
ZF__ 2
Mtanhmz], (30)
maz
tm3 [tanh tanh
G = m;mz . 1. ml_ nnm; i (31)
a¥ms—mi)|. m nm;
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where
M*m3(F —m}) tanhm
a* = Ra +-—“‘—22‘(———i—1~) “-".1
m3z—mi mq
M?m}(F —m3) tanh m,
————— . (32)
ms—mi ms

Equations (27)—(31) are identical with equations (20)-
(22), (24) and (25) of Gupta and Gupta [7], provided

Ca _ 1
M*F+Ra a*

Gupta and Gupta [7] left ca{(=M?c3—cz) as un-
known. In our case ¢4 is not present and evaluation
of it has been made on considering the fact that total
current flowing between the walls of the channel is
Zero.

In Figs. 4 and 5 the non-dimensional flow rate w
and rate of heat transfer G have been plotted against F
for M? = 10, Ra = 1 and for various values of ¢ and .
It is observed from Figs. 4 and 5 that for fixed F and i,
the flow rate and the rate of heat transfer decrease with
the increase of ¢. It is also observed that for fixed F
and ¢, w and G decrease with increase of . But for
fixed ¢ and ¥, w increases while G decreases with the
increase of F. It is seen from Figs. 4 and 5 that due to
presence of radiation (F # 0), volume flow is more
while rate of heat transfer is less than those in the
absence of radiation (F = 0).

It is interesting to note that the effects of ¢ and ¥
are similar to those of M and Ra respectively on the
velocity, the magnetic field, the temperature, the flow
rate and the rate of heat transfer.

(33)
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EFFET DES CONDUCTANCES DE LA PAROI SUR LA CONVECTION
HYDROMAGNETIQUE D'UN GAZ RAYONNANT DANS UN CANAL VERTICAL

Resume—On donne une solution exacte de la convection établie d’un fluide électriquement conducteur

s’¢coulant entre deux parois verticales conductrices de la chaleur et de I'électricité et soumis & un champ

magnétique transversal. Il apparait qu’une augmentation de la conductance électrique des parois produit

une diminution dela vitesse, de la température, du débit de fluide et du flux thermique et une augmentation

du champ magnétique. Cependant, une augmentation de la conductance thermique des parois produit

une diminution de la vitesse, du champ magnétique, du débit de fluide et du flux thermique et une
augmentation de la température.

DER EINFLUSS DES WARMELEITVERMOGENS
DER WAND AUF DIE HYDROMAGNETISCHE KONVEKTION EINES
STRAHLENDEN GASES IN EINEM VERTIKALEN KANAL

Zusammenfassung—Es wurde eine exakte Ldsung fiir die voll ausgebildete konvektive Stromung eines

elektrisch leitenden Fluides zwischen zwei thermisch und elektrisch leitenden vertikalen Winden unter

der Einwirkung eines transversalen Magnetfeldes gefunden. Es wurde festgestellt, dal die Geschwindigkeit,

die Temperatur, der Massenstrom und der Wirmeiibergang mit wachsender elektrischer Leitfahigkeit

der Winde abnimmt, wihrend das Magnetfeld zunimmt. Nimmt die Wirmeleitfihigkeit der Winde zu,

so nimmt auch die Temperatur zu, und die Geschwindigkeit, das Magnetfeld, der Massenstrom und der
Wirmeiibergang nehmen ab.

BIIMAHUE TEIUIOITPOBOOHOCTH CTEHOK HA TMAPOMATHUTHVIO
KOHBEKHHMIO U3JIVYAIOHIEI'O TA3A B BEPTHUKAJIBHOM KAHAIJIE

Amomm — HOHY'{GHO TOYHOE pPEHIEHHE IS NOMHOCTHIO DPA3BHTOIC KOHBEKTHBHOIC TEYCHHMSA

SJIEKTPHYECKHE NPOBOAAICH KAAKOCTH MEXKAY ABYMS BEDTHKAIBHBIMH TCPMUYECKH H 3/ICKTPHYCCKH

OPOBOAAILMMHE CTCHKAaMH NMOA AEHCTBHEM MONEPEYHOrO0 MATHHTHOTO MOJIA. Hamxeﬂo, YTO C YBEJIH~

YEHHUCM JJICKTPOIIPOBOSHOCTH CTCHOK YMEHLILAIOTCH CKOPOCTL, TEMINICPATYPA, PpacXod XHAKOCTH H

HHTEHCHBHOCTD TEIIIIOOOMEHa, a BETMYMHA MArHHTHOIO TOMA Bo3pacraer. B 1o BpEMA KaK yMEHB~

IAKOTCA BETHYNHA MArHMTHOIO 1ONA, PACXOX XHOKOCTH B HHTEHCHBHOCTH Tennoobmena, TeMnepa-
TYpa DOBBIIIACTCA ¢ YBCNMYCHHEEM TCIIONPOBOAHOCTH CTCHOK.
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